跳至主要内容

Silicon Nitride (Si3N4) Ceramic Injection Molding (CIM) service

 

Silicon Nitride (Si3N4) Ceramic Injection Molding (CIM) service

Silicon Nitride Ceramic Injection Molding (CIM Si3N4) service is a cutting-edge manufacturing approach that capitalizes on the exceptional properties of silicon nitride ceramics. In this innovative process, powdered silicon nitride is meticulously mixed with binders and injected into precision molds, where controlled heating and sintering occur. It combined the high precision and complexity of the injection molding process and the excellent properties of the Silicon Nitride Ceramic.

Key features of CIM Si3N4 include its exceptional mechanical strength, excellent wear resistance, and remarkable thermal shock resistance. This ceramic material combines these attributes to offer a versatile solution for applications demanding robustness under challenging conditions. CIM Si3N4 is renowned for its ability to withstand high mechanical stresses, resist wear and abrasion, and maintain its integrity even when exposed to rapid temperature changes.

Silicon-Nitride-Si3N4-injection-molding-service

CIM Silicon Nitride (Si3N4) Typical Properties

Physics and Mechanical Properties

Properties

Fracture Toughness 

Flexural Strength 

Impact Strength 

Hardness 

Young's Modulus 

Elastic Modulus 

Thermal Expansion 

Compressive Strength 

Density 

(MPa√m)

Mpa

(J/m)

(HRA)

(GPa)

(GPa)

(10^-6/°C)

(MPa)

g/cm³

CIM Silicon Nitride (Si3N4)

6.5

800

7.5

92

290

320

3.2

3000

3.2

Key Features And Applications of CIM-Si3N4 Parts

ceramic-injection-molding-Silicon-Nitride-piston-parts

Fracture Toughness

The High Fracture Toughness of CIM-Si3N4 parts is a remarkable characteristic, measuring at 6.5 MPa√m. This value signifies their exceptional resistance to crack propagation and fracture, making them highly reliable even in environments prone to mechanical stresses and impacts.

Silicon Nitride (Si3N4) CIM parts with High Fracture Toughness find critical applications in industries where structural integrity is paramount. In the aerospace sector, they are utilized in turbine components, where the ability to withstand vibrations, thermal cycling, and mechanical loads is crucial. In automotive applications, Si3N4 parts contribute to engine components, such as pistons and valves, where they endure high temperatures and mechanical stresses.

Flexural Strength

The High Flexural Strength of Si3N4 injection molded parts is remarkable, typically exceeding 700 MPa. This attribute signifies their capacity to withstand bending forces and resist deformation under applied loads, making them ideal for applications demanding structural integrity and load-bearing capabilities.

In the manufacturing industry, Si3N4 parts excel as inserts, end mills, and wear-resistant components that endure substantial mechanical stresses during machining processes. In aerospace, they contribute to engine components and turbine blades, where mechanical strength and reliability are crucial. Similarly, the automotive sector relies on Si3N4's flexural strength for engine components and bearings that experience dynamic mechanical forces.

ceramic-injection-molding-Silicon-Nitride-connector-parts
Silicon-Nitride-injection-molded-bearing-parts

Impact Resistance

Silicon nitride ceramics are renowned for their exceptional toughness, resulting from intergranular phase content and grain boundary reinforcement. These factors enable the material to absorb and dissipate impact energy effectively, preventing crack propagation and fracture. The presence of elongated grains, along with a fine-grained matrix, contributes to the overall impact-resistant nature of Si3N4 parts, allowing them to endure sudden forces and shocks without compromising their structural integrity.

Applications of Silicon Nitride (Si3N4) injected molded parts that benefit from their high Impact Resistance include wear-resistant components in industrial machinery, cutting tools, and bearings.

Hardness

Si3N4 injection molded parts exhibit high Hardness due to their intrinsic properties and unique microstructure. Silicon nitride ceramics have a covalent atomic bonding structure, contributing to their exceptional hardness. The strong bonds between silicon and nitrogen atoms result in a dense and rigid material structure. Additionally, the fine-grained microstructure of Si3N4 ceramics enhances their hardness, as the smaller grain size restricts dislocation movement, making it difficult for cracks to propagate.

Hardness applications of Silicon Nitride (Si3N4) injected molded parts include precision bearings, cutting tools, and wear-resistant components in industrial machinery.

Silicon-Nitride-injection-molded-medical-parts
Si4N4-ceramic-injection-molding-components

Thermal Stability

Si3N4 injection molded parts possess excellent Thermal Stability due to the inherent characteristics of silicon nitride ceramics. Si3N4 has a high melting point and excellent resistance to thermal expansion, making it capable of withstanding extreme temperature variations without significant dimensional changes.

The Thermal Stability applications of Silicon Nitride (Si3N4) injected molded parts include high-temperature components in gas turbines, heat exchangers, and automotive engines. Si3N4's ability to withstand thermal cycling, rapid temperature changes, and exposure to high temperatures without degradation makes it a preferred material for applications where thermal stability is paramount.

CDS-consultive-design-service

Consultative Design Services

Neway Custom Metal Injection Molding Service provides free Consultative Design Services throughout the process. This includes all processes from your design stage to mass-produced finished products.

1. Material selection Consult

2. Structural design service

3. Mold design service

Contact us now if you are interested.


What We Can Offer?

We offer free material selection and consultative design services from beginning to end. No MOQs, Rapid prototyping, and mass production are our strengths.

评论

此博客中的热门博文

What is Powder Metallurgy | Process, Materials, and Applications

Powder metallurgy is a versatile manufacturing process that involves the production of parts and components using powdered metal or non-metal materials (ceramic or composite). It offers unique advantages over traditional manufacturing methods, making it a preferred choice for various industries. This article will delve into the process, materials used, and applications of powder metallurgy, highlighting its significance for purchasing and parts design engineers. Definition and classifications Powder metallurgy can be defined as a manufacturing technique that involves the production of parts and components from metal or non-metal powders. It encompasses various processes, such as powder compression molding (PCM) service and metal injection moulding (MIM) service . These processes allow for the production of complex and intricate shapes that are difficult to achieve through conventional manufacturing methods. Powder Compression Molding Powder Compression Molding (PCM ) involves compacti

Metal Injection Molding vs. Die Casting: A Comparative Analysis

 Metal parts manufacturing is crucial in various industries, from automotive and aerospace to electronics and medical. Two popular methods for producing custom metal parts are Metal Injection Molding (MIM) and Die Casting . In this article, we will explore these processes, their advantages, limitations, suitable applications, and materials and compare them to help you decide when choosing the right process for your custom metal parts. Metal Injection Molding (MIM) Metal Injection Molding (MIM) is a manufacturing process that combines the benefits of plastic injection molding and powder metallurgy. It involves the production of complex metal parts using fine metal powders and a binder material. The process includes several steps, such as feedstock preparation, injection molding, debinding, and sintering. MIM offers excellent design flexibility, allowing the production of intricate and highly precise metal components. Advantages and Limitations of MIM MIM offers numerous advantages, inc

Zinc Die Casting Vs. Aluminum Die Casting: What Are The Differences

  Die casting is a versatile and efficient manufacturing process that produces high-quality metal parts with intricate shapes and excellent dimensional accuracy. At its core, die casting involves forcing molten metal under high pressure into a mold cavity. This method is favored for its speed, precision, and the superior quality of the final product. Material selection plays a pivotal role in die casting. The choice of metal influences the part's properties and affects the production process, cost, and application suitability. Zinc and aluminum are two of the most popular choices among the various metals, each bringing unique characteristics. Differences Between Zinc Die Casting Vs. Aluminum Die Casting Material Properties: Cast Aluminum And Zinc Understanding the material properties of aluminum and zinc is crucial for selecting the suitable metal for your die-casting project. Each metal has distinct physical and mechanical characteristics that affect its performance and suitabili